Topic 19b

The infra-red image of a head shows the distribution of heat. Different colours indicate different temperatures. Which do you think are the warmest regions?

Thermal Properties of Matter

contents

Internal Energy

- Heat Capacity

Specific Heat Capacity
Melting, Boiling and Evaporation
Specific Latent Heat
Chapter Review

finternal energy

Energy contained inside a substance is called the internal energy.

- exists in the form of kinetic energy (due to motion) and potential energy (due to intermolecular forces which depends on spacing between molecules)
- Internal energy = k.e. + p.e. of molecules

internal energy

1. when temperature of substance rises, internal energy increases

- due to increase in kinetic energy of molecules (increase in speed of motion)

2. when substance changes from solid to liquid state, internal energy increases

- due to increase in potential energy of molecules: work is done to increase the spacing between molecules is stored as p.e.
- k.e. constant, since temperature constant

heat capacity C of an object

The amount of heat required to raise the temperature of the object by 1 K or $1^{\circ} \mathrm{C}$.

- Sl unit is JJ K^{-1} or JJ ${ }^{\circ} \mathrm{C}^{-1}$
- different substances have different heat capacities

specific heat capacity c of an object

The amount of heat required to raise the temperature of 1 kg of the substance through 1 K or $1{ }^{\circ} \mathrm{C}$.

- Sl unit is $\mathrm{J} /(\mathrm{kg} \mathrm{K})^{-1}$ or $\mathrm{J}^{\mathrm{kg}} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ or $\mathrm{J}^{\mathrm{kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}}$
- substances with a high specific heat capacity warm up (or cool) more slowly than substances with a lower heat capacity because they must absorb (or lose) more heat to raise (or lower) the temperature

$Q=m c \Delta \theta$

Example 1

An electric heater of power 800 W raises the temperature of 4.0 kg of a liquid from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 100 s . Calculate
(a) the heat capacity of the 4.0 kg liquid; [Ans: $4000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ or $4000 \mathrm{~J}^{\circ} \mathrm{C}^{-1}$]
(b) the specific heat capacity of the liquid.
[Ans: $1000 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$ or $1000 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$]

Example 2

A 2 kW steel kettle of mass 1 kg contains 1.5 kg of water at $30^{\circ} \mathrm{C}$. What is the time taken to boil the water, if the specific heat capacity of steel is $460 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$, and the specific heat capacity of water is $4200 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$?
[Ans: 237 s]

specific heat capacity

effects and applications of the high

 specific heat capacity of waterWater has a high specific heat capacity compared to other substances.

- water needs a lot of energy to warm it up; once it is warm, it holds a large store of thermal energy
- loss of a large amount of energy causes a small drop in temperature
- temperature of sea rises and falls very slowly

effects and applications of the high specific heat capacity of water

The high specific heat capacity of water (as well as its relative cheapness and availability) accounts for its use

- as the circulating liquid in central heating systems
- as a cooling liquid in car engines
- as hot water bottles to keep people or things warm

hot water bottle

melting, boiling and evaporation

Energy is involved in changes of state.

At each stage, what is the change in internal energy, k.e. and p.e.?

melting and freezing (soliclification)

Melting	Freezing
A process in which a	A process in which a
substance changes its	substance changes its
state from solid to liquid	state from liquid to solid
For a pure substance,	For a pure substance,
melting occurs at a	freezing occurs at a
definite (constant)	definite (constant)
temperature	temperature
- melting point	- freezing point

Different substances have different melting and freezing points.

melting point

The melting point for a substance can be determined by conducting an experiment and plotting the cooling curve.

determination of melting point of naphthalene

The horizontal line indicates the melting point.

cooling curve of naphthalene

latent heat of fusion

The heat that is absorbed without a change in temperature is termed latent heat of fusion (melting) of the substance.

When a liquid freezes, latent heat is released without any change in its temperature.

latent heat in terms of molecular behaviour (melting))

The total energy in molecules (or internal energy in substance) consists of:

- kinetic energy of molecules that depends on temperature
- potential energy of molecules that depends on the force between the molecules and their distance apart

latent heat in terms of molecular behaviour (melting)

- as solid melts into liquid, molecules in liquid state have a wider range of movement than in the solid state; latent heat of fusion is absorbed; potential energy increases
- as liquid becomes gas, energy (latent heat of vaporisation) is required to separate molecules against their mutual attraction; no increase in kinetic energy because there is no rise in temperature

effect of impurities on the melting point of water

Any impurities added to pure water will lower the melting (freezing) point of the mixture.

- salt is commonly used for lowering the melting point of water by about $4{ }^{\circ} \mathrm{C}$
- antifreeze substances are applied to car cooling systems to prevent water inside from freezing and expanding

effect of pressure on the melting point of water

Pressure applied to ice lowers the melting (freezing) point.

- when ice changes to water, its volume decreases
- high pressure applied to ice causes the volume to decrease; helps ice to melt
- applications include iceskating, two pieces of ice taken from the freezer sticking together and snow squeezed into a snowball

boiling and condensation

Boiling

Condensation

A process in which a substance changes its state from the liquid state to the gaseous state
For a pure substance, boiling occurs at a definite (constant) temperature

- boiling point

A process in which a substance changes its state from gaseous to liquid state

For a pure substance, condensation occurs at a definite (constant) temperature

- condensation point

latent heat of vaporisation

The heat that is gained or released without any rise in temperature is called the latent heat of vaporisation.

When a liquid boils, latent heat is gained without any change in its temperature.

effect of impurities on the boilling point of water

Any impurities added to pure water will raise the boiling point of the mixture.

- mixture needs higher temperature to boil
- salt is commonly used for raising the boiling point of water by about $1{ }^{\circ} \mathrm{C}$

effect of pressure on the boiling point of water

Pressure applied to water increases the boiling point.

- when water changes to steam, its volume increases
- high pressure applied to water opposes expansion (boiling); helps water to boil at higher temperature than $100^{\circ} \mathrm{C}$

the refrigerator

The household refrigerator uses a gas called freon which is liquefied under pressure. [Refer textbook]

insulation in walls

An adjustable thermostat is used to control the temperature in the refrigerator:

boiling under reduced pressure

An experiment can be conducted to show the effect of pressure on the boiling point.

- increased pressure increases boiling point
- reduced pressure decreases boiling point

boiling under reduced pressure

Boiling at low temperatures

- requires less energy to boil off unwanted water
- is cheaper because less fuel is used
- applications include production of sugar and evaporated milk

boiling under increased pressure

- increased pressure increases boiling point
- applications include the autoclave pressure cooker and aerosol sprays

pressure cooker
aerosol

effect of pressure and impurities on water

	Melting Point	Boiling Point
Effect of impurities	decreases	increases
Effect of higher pressure	decreases	increases

effect of pressure on other substances

	Melting Point	Boiling Point
Effect of higher pressure	increases	increases

evaporation and boilling

evaporation

Boiling

Evaporation

A process in which a substance changes its state from the liquid state to the gaseous state Quick
Bubbles are formed
Occurs throughout the liquid

Occurs at a definite temperature --- boiling point

Source of energy needed

Evaporation is a process whereby the water changes into vapour without boiling Slow
No bubbles formed
Takes place only from the exposed surface of the liquid

Occurs at all temperatures

Energy supplied by surroundings

Factors Affecting Rate of Evaporation

Temperature
Higher temperature
\Rightarrow faster rate of evaporation
Area of exposed Greater exposed surface area surface
\Rightarrow faster rate of evaporation
Humidity of Higher humidity
surrounding air \Rightarrow slower rate of evaporation
Motion of air Greater motion of the air
\Rightarrow faster rate of evaporation
Pressure
Lower external pressure
\Rightarrow faster rate of evaporation
Lower boiling point
\Rightarrow faster rate of evaporation

explanation of cooling by evaporation

Cooling by evaporation can be explained by using kinetic theory. The particles of a liquid are in continuous motion at different speeds.

- average kinetic energy of particles is proportional to the temperature of the liquid
- occurs when faster-
moving particles escape from the surface of the liquid, leaving behind particles having slower speeds
- average speed (kinetic energy) remaining in the liquid decreases and

specific latent heat of fusion and vaporisation

Specific Latent Heat of Specific Latent Heat of Fusion (l_{f})

The quantity of heat needed to change a unit mass of the substance from solid state to liquid state without a temperature change

The quantity of heat needed to change a unit mass of the substance from liquid state to vapour state without a temperature change

SI unit is J / kg
$\mathrm{Q}=\mathrm{m} \times l_{\mathrm{v}}$

Problem solving strategy

- Law of conservation of energy
- thermal energy supplied $\rightarrow E=P \times t$
- change in temperature $\rightarrow \mathrm{Q}=\mathrm{mc} \mathrm{\Delta} \mathrm{\theta}$
- change of state $\quad \rightarrow \mathrm{Q}=\mathrm{ml}$

Key steps

1.Apply law of conservation of energy using word equation
2.Apply equations for thermal energy using suitable formulae and symbols
3.Simplify equations
4.Substitute values and solve equation

Case 1

heat supplied = thermal energy gained for (by electrical heater or other source) temperature change of body A $+$
thermal energy used for change of state of body B +++

$$
\mathrm{P} \times \mathrm{t} \quad=\quad \mathrm{mc} \Delta \theta+\mathrm{ml} \quad+++
$$

Case 2

thermal energy lost $=$ thermal energy gained for temperature drop and/or change of state in bodies 1 and 2
E.g.
$\left(m_{1} c_{1} \Delta \theta_{1}+m_{2} l_{2}\right)=\left(m_{3} c_{3} \Delta \theta_{3}+m_{4} l_{4}\right)$
cooling, freezing for temperature rise and/or change of state of bodies 3 and 4
warming, melting

Case 3

combinations of Case 1 and Case 2

Example 3

What is the amount of energy required to change 10 g of ice at $0^{\circ} \mathrm{C}$ to water at $20^{\circ} \mathrm{C}$?
[Specific latent heat of fusion of ice $=336 \mathrm{~J} / \mathrm{g}$, specific heat capacity of water $=4.2 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$.]
[Ans: 4200 J$]$

Example 4

A glass contains 250 g of hot tea at $90^{\circ} \mathrm{C}$. What is the minimum amount of ice at $0^{\circ} \mathrm{C}$ needed to cool the drink to $0{ }^{\circ} \mathrm{C}$? [Specific latent heat of fusion of ice $=336 \mathrm{~J} / \mathrm{g}$, specific heat capacity of tea
$=4.2 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$.]
[Ans: 281 g$]$

