

2011 Sec 3 Physics Problem Solving Strategy in Physics - I SEE

Name:	() Class: 3/	Date:

IDENTIFY the relevant concepts

Try to **understand** the physics of the problem before choosing the approach or launching into any mathematical analysis

- 1. identify the required variable(s)
- 2. recall related physical laws/principles, formulae and equations
- 3. recall similar systems in related topics

SET UP the problem

- 1. Sketch a **diagram** if it helps (it nearly always does).
- 2. Choose the **equations** or **formulae** you'll use to solve the problem and decide how you'll use them.
- 3. Try to keep expressions algebraic (using **suitable symbols**) rather than numerical. **Advantages**:
 - units of your answer can be checked easily at the end of your calculation.
 - less likely to make mistakes if you are manipulating a few <u>symbols</u> rather than actual numbers.
 - expressing your answer algebraically first allows easier checking later.

EXECUTE the solution

- 1. List known and unknown quantities.
- 2. Solve the equations for the unknowns.
- 3. Show your **working** <u>neatly</u> and <u>clearly</u> on the page, and explain what you are doing and why you are doing it.

EVALUATE the answer

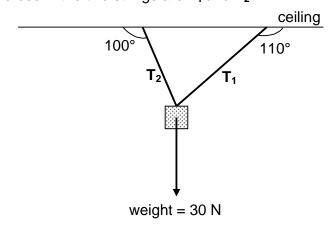
- 1. Check the **units** of your answer.
- 2. Generally, use 2 or 3 significant figures in your final numerical answer.
- 3. Check the **magnitude** of your answer against common sense or other knowledge.

To summarize the 4-step strategy:

IDENTIFY

→ SET UP

→ EXECUTE


→ EVALUATE OR I SEE (acronym)

Note: Some steps may be carried out simultaneously depending on the problem.

Reference: Adapted from University Physics (with Modern Physics) by Young and Freedman, 2008 (12th Edn).

Worked Example

The figure below shows a 30 N weight being supported by two strings from a ceiling. The tension forces in the two strings are T_1 and T_2 .

- (a) On the figure above, label the directions of T_1 and T_2 in the strings acting on the weight.
- (b) With the aid of a scale diagram, determine the magnitudes of T_1 and T_2 .

I: IDENTIFY the	Vector triangle approach
relevant	Forces (tensions, weight)
concepts	Vector triangle
	Stationary object
	 Forces in equilibrium → closed vector triangle
S: SET UP the	Sketch vector triangle
problem	Identify, determine angles
E: EXECUTE the	Choose suitable scale (make full use of space available)
solution	Draw scaled diagram with protractor , ruler, pencil
	Label all forces, arrows, angles
E: EVALUATE	Check unit, s.f.
the answer	 Is magnitude of each tension reasonable? Is their sum > 30 N?
	- 10 magnitude of outfit follows found to their suffix of the