2011 Sec 3 Physics
Problem Solving Strategy in Physics - I SEE
Name: \qquad () Class: 3/ \qquad Date: \qquad

IDENTIFY the relevant concepts

Try to understand the physics of the problem before choosing the approach or launching into any mathematical analysis

1. identify the required variable(s)
2. recall related physical laws/principles, formulae and equations
3. recall similar systems in related topics

SET UP the problem

1. Sketch a diagram if it helps (it nearly always does).
2. Choose the equations or formulae you'll use to solve the problem and decide how you'll use them.
3. Try to keep expressions algebraic (using suitable symbols) rather than numerical.

Advantages:

- units of your answer can be checked easily at the end of your calculation.
- less likely to make mistakes if you are manipulating a few symbols rather than actual numbers.
- expressing your answer algebraically first allows easier checking later.

EXECUTE the solution

1. List known and unknown quantities.
2. Solve the equations for the unknowns.
3. Show your working neatly and clearly on the page, and explain what you are doing and why you are doing it.

EVALUATE the answer

1. Check the units of your answer.
2. Generally, use $\mathbf{2}$ or $\mathbf{3}$ significant figures in your final numerical answer.
3. Check the magnitude of your answer against common sense or other knowledge.

To summarize the 4-step strategy:
IDENTIFY
SET UP
\rightarrow EXECUTE
\rightarrow EVALUATE OR ISEE (acronym)

Note: Some steps may be carried out simultaneously depending on the problem.
Reference: Adapted from University Physics (with Modern Physics) by Young and Freedman, 2008 (12 ${ }^{\text {th }}$ Edn).

Worked Example

The figure below shows a 30 N weight being supported by two strings from a ceiling. The tension forces in the two strings are \mathbf{T}_{1} and \mathbf{T}_{2}.

(a) On the figure above, label the directions of $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$ in the strings acting on the weight.
(b) With the aid of a scale diagram, determine the magnitudes of \mathbf{T}_{1} and \mathbf{T}_{2}.

AngJL

